
NASA Relevance:

• Enable fault monitoring and diagnosis in systems 
such as the Boeing aircraft engine, the Hybrid 
Combustion Facility (HCF) and SOFIA at Ames, and 
the International Space Station. 

Accomplishments to date:
• Have applied our algorithms to fault diagnosis of a 

Boeing 400 aircraft engine.  The system continuously 
monitors a large set of variables and diagnoses the 
major fault categories

• Applied on a test data of 30 firings of the HCF, 5 
major fault categories have been identified

Goal: Fault monitoring and diagnosis in intelligent 
control requiring complex inferences in continuous states 
without complete analytical models.

Objectives: Leverage existing knowledge about the 
devices (i.e., model based approaches) while also 
learning from experience (data clustering based) to 
further refine this knowledge in detecting and isolating 
failures. Leverage existing reinforcement learning 
techniques for the adaptation, generalizing beyond the 
specific instances that are observed in the in training set. 
This is particularly challenging when dealing with real-
valued variables whose values change over time.
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Schedule:
• FY01: Develop a data clustering algorithm for fault 

detection and apply it to a Boeing aircraft 400 series 
engine

• FY02: Apply a combined model based and data 
clustering based approach on the Ames Hybrid 
Combustion Facility.  Contrast the results with L2, 
RODON, and TEAMS 

• FY03: Formalize the theory of combined model based 
and data clustering based approaches for fault 
monitoring and diagnosis
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The Hybrid Combustion Facility 
(HCF) at Ames



Perception Based Reasoning (L.A. 
Zadeh)

• Perceptions of distance, size, weight, color, 
force, truth, likelihood, etc.

• Brain’s power: Manipulating perceptions

• Perceptions vs. Measurements
– Measurements are crisp

– Perceptions are approximate



Computational Theory of 
Perceptions (L.A. Zadeh)

• A methodology for Computing with words

• Human Concepts have granular structures

• A granule is a clump of physical or mental 
objects (points) drawn together by 
indistinguishability, similarity, proximity or 
functionality

• A granule defined by a generalized 
constraint: X isr R



Information Granulation (L.A. 
Zadeh)

• Involves a partitioning of whole into parts

• Human way of employing data compression 
for reasoning

• For making rational decisions in an 
environment of imprecision, uncertainty and 
partial truth



Types of Perceptions

• X is A Possibilistic, partial knowledge

• X isp P Probabilistic, partial certainty

• X isr R Generalized, hybrid
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Human Brain and Perception

• Perceptual Science Group at MIT
– Human Visual Perception, machine vision, 

image processing

• Perception and Neurodynamics lab, OSU
– This lab conducts research on understanding

neurocomputational mechanisms underlying 
perceptual processes and on building effective 
algorithms for solving real-world problems 
related to machine perception



An expert system shell for fault 
diagnosis
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• Diagnostic model

Step 2
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Step 4

System  Health Model
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Engine Health Maintenance

• Data was collected from a Boeing 747-400 
simulator at NASA Ames.

• Of the ninety variables collected, seven 
were selected as pertinent for the detection 
of three particular faults.

• Faults: engine flameout, recoverable stall 
and low speed rotor failure



Fault Detection Example

If EngineThrust (t) is SMALL1

and EngineThrust (t-1) is MEDIUM1

and EnginePressureRatio(t) is VERY-SMALL2

and EnginePressureRatio(t-1) is SMALL2

then EngineFlameout(t+1) is 

a + b*EngineThrust(t)   + 
c*EngineThrust(t-1)   +          

d*EnginePressureRatio(t)  + 
e*EnginePressureRatio(t-1)

Sample Rule for Aircraft Engine Fault predictor 



Example 1

Engine Flameout Indicator: test on Engine Flameout data



Engine Flameout Indicator: test on Stall data

Example 2



Engine Flameout Indicator: test on Rotor Failure data

Example 3



HCF nominal run with no faults
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HCF run with a fault (rough burning)
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