
NASA Relevance:
• Allow plug-and-play applications in NASA planners, like Aspen, to 

enable anytime planning and scheduling of time-critical NASA 
applications.

Accomplishments to date:
• Completed the theory of calculus of variations in discrete space. 
• Applied the theory to demonstrate significant quality and time 

improvements on benchmarks as compared to those of Aspen.
• Completed a Web-based prototype for solving nonlinear discrete 

optimization problems.
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Goal: Develop the theory and algorithms for dynamic planning and 
scheduling under nonlinear discrete/procedural constraints.

Objectives:
• Formulate NASA planning problems as dynamic optimization under 

nonlinear discrete constraints.
• Develop formal theory and algorithms to solve dynamic optimization 

problems efficiently.

Key Innovations:
• Identify new dominance relations on nodes in dynamic optimization 

problems in discrete space.
• Extend necessary Euler-Lagrange conditions in optimal control 

theory in continuous space to counterpart conditions in discrete space 
and prove that they are necessary as well as sufficient.

• Extend Aspen to allow joint optimization of objective and constraints, 
based on a sound mathematical theory.

• Theory of Lagrange multipliers for discrete constrained optimization: 
necessary and sufficient conditions for constrained local minima. 

• Stochastic search algorithms: unified algorithm to look for discrete-
neighborhood saddle points.

• Calculus of variations in discrete space: 
• New dominance relations on nodes in dynamic optimization;
• Discrete-neighborhood Euler-Lagrange conditions (DNEL) proved 

using the theory of Lagrange multipliers for discrete optimization.
• Application of theory and stochastic search to Aspen.

Description/Schedule

Schedule: 

• 7/15/02: Demonstrate algorithms on benchmark applications in 
Aspen.

• 8/31/02: Complete integration of algorithms into Aspen.
• 11/31/02: Investigate applications in time-variant planning, 

multi-objective scheduling, and general planning problems.

Applying
DNEL
during
iterative
repair



Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Dynamic Optimization Problems

Optimization problems with time varying dynamic variables

Time
Space Continuous Discrete

Continuous
Control Theory and Classical
Calculus of Variations

Control Theory and Classical
Calculus of Variations

Discrete
No Previous Work
(Potentially Interesting)

Current focus with functions
that may not be continuous
and differentiable (NP-hard)
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Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Objectives and Constraints in Dynamic Optimization
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Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Dynamic Optimization Problems Modeled by Aspen
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Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Path Dominance: Principle of Optimality

• Principle of Optimality in dynamic programming applied on feasible state c

J2 ≤ J1 =⇒ P2 → P1

s

P2

P1

J2

J1 c

Stage t If c lies on the optimal

path between s and d and

• Can only be applied to unconstrained problems or problems with local

(Lagrange type) constraints

– Polynomial worst-case complexity: O
(

N |Y|2
)

• Not applicable to problems with general constraints I(Y ) = 0

– Exponential worst-case complexity: O
(

|Y|N
)

, assuming NP hard
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Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Node Dominance

binary
dominance

relation

(not related to P1)

s

c2

P1

Termination of c1 by

c1

binary dominance relation
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Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Benefits of Using Node Dominance

  

Stage 0 Stage 1 Stage N + 1
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Stochastic Anytime Search in Autonomous Planning and Scheduling Problem Definition

Worst-Case Complexities in Path and Node Dominance

Constraint Without General Constraints With General Constraints

Type (Conventional DP) (Without Path Dominance)

Dominance With Path With Path and Without Node With Node

Used Dominance Node Dominance Dominance Dominance

Complexity O
(

N |Y|2
)

O
(

N |Y| +
∑N−1

i=1 O
(

|Y|N
)

O (N |Y|

|s(i)| × |s(i + 1)|)
∏N

i=1 |s(i)|
)

Condition

Type Necessary and Sufficient − Necessary

Node dominance works well when |s(i)| � |Y|
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Stochastic Anytime Search in Autonomous Planning and Scheduling Current Aspen Implementation

Dominance in ASPEN

• Path dominance (Principle of Optimality) cannot be applied

– Planning problems have general constraints spanning across multiple or all

stages

• Node dominance relations are open

Benjamin W. Wah 8



Stochastic Anytime Search in Autonomous Planning and Scheduling Current Aspen Implementation

Illustration of Conflicts/Scores vs Iterations in ASPEN Search

Repair strategy alternates between repairs of constraints
and optimization of objective
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Stochastic Anytime Search in Autonomous Planning and Scheduling Current Aspen Implementation

Best Feasible Scores in an 8-Orbit Problem
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Stochastic Anytime Search in Autonomous Planning and Scheduling Summary of Techniques

Calculus of Variations in Discrete Space: General Idea

• Dynamic optimization is discrete constrained optimization

– Locally optimal bundles ≡ discrete-neighborhood saddle points SPdn

– Constrained simulated annealing converges asymptotically to globally
optimal bundles with probability one

– Stochastic search with iterative deepening finds globally optimal bundles in
finite time with high probability

– Does not require differentiability or continuity of functions

• Lagrange constraints + local objectives

≡ Discrete-space Euler-Lagrange conditions for each stage

≡ Distributed discrete-space saddle-point conditions

• Reduce the problem of finding bundles that satisfy overall SPdn

=⇒ Finding dominating distributed saddle points SPdn in each stage
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Stochastic Anytime Search in Autonomous Planning and Scheduling Summary of Techniques

Intuitive Meaning Behind Saddle Points

dynamically
varying

(h(x) = 0)

(∆xL(x, λ) = 0)

minx[f(x) + λTH(h(x))]↓

λ↑λ↑

Penalties λ are constraints are satisfied

Gradient descents in x space

Equilibrium point where

to reduce objective function

space to increase penalties
on violated constraints

Gradient ascents in λ

and constraint violations

and objective is minimum
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Stochastic Anytime Search in Autonomous Planning and Scheduling Summary of Techniques

Node Dominance due to Local Saddle Points

binary
dominance

relation

Non-saddle point

s

c2

P1

Termination of c1 by

c1

binary dominance relation
(not related to P1)

Local saddle point
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

CX1-PREF Benchmark

• Citizen Explorer-I satellite design and operation planning benchmark

– Multiple competing preferences to be optimized

– Problem generator to generate different problem instances

perl probgen.pl < random seed > < number of orbits >

• ASPEN search setting:

a) Find feasible schedule using repair

b) Optimize score using optimize (default 200 iterations)

c) repeat (a) and (b)
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Best Feasible Scores in an 8-Orbit Problem
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Search Progress in an 8-Orbit Problem

• Number of conflicts vs. Iteration:

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000

N
um

be
r 

of
 C

on
fl

ic
ts

Iteration

ASPEN solving CX1-PREF Benchmark with 8 Orbits

ASPEN

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000

N
um

be
r 

of
 C

on
fl

ic
ts

Iteration

DCV-CSA solving CX1-PREF Benchmark with 8 Orbits

DCV-CSA

• Score vs. Iteration:

0.3
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0 5000 10000 15000 20000 25000

O
bj

ec
tiv

e 
Sc

or
e

Iteration

ASPEN solving CX1-PREF Benchmark with 8 Orbits

ASPEN

0.3
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0 5000 10000 15000 20000 25000

O
bj

ec
tiv

e 
Sc

or
e

Iteration

DCV-CSA solving CX1-PREF Benchmark with 8 Orbits

DCV-CSA

Benjamin W. Wah 16



Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Best Feasible Scores in a 16-Orbit Problem
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Search Progress in a 16-Orbit Problem

• Number of conflicts vs. Iteration:
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Best Feasible Scores in OPTIMIZE Benchmark
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Search Progress in OPTIMIZE Benchmark

• Number of conflicts vs. Iteration:
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• Score vs. Iteration:
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Best Feasible Scores in PREF Benchmark
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Stochastic Anytime Search in Autonomous Planning and Scheduling Results on Aspen

Search Progress in PREF Benchmark

• Number of conflicts vs. Iteration:
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• Score vs. Iteration:

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0 10000 20000 30000 40000 50000

O
bj

ec
tiv

e 
Sc

or
e

Iteration

ASPEN solving PREF Benchmark

ASPEN

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0 10000 20000 30000 40000 50000

O
bj

ec
tiv

e 
Sc

or
e

Iteration

DCV-CSA solving PREF Benchmark 

DCV-CSA

Benjamin W. Wah 22



Stochastic Anytime Search in Autonomous Planning and Scheduling Conclusions

Conclusions

• Dynamic optimization with general constraints in discrete time and state

– Path dominance in dynamic programming cannot be applied

– Calculus of variations works in continuous state space

• Binary node dominance relations

– CLMdn ≡ ELEdn ≡ DSPdn

– Rely on theory of Lagrange multipliers for discrete constrained optimization

– Do not require the differentiability and continuity of functions

– Significant reduction in the base of the exponential complexity

• Better-quality solutions in shorter time than those of ASPEN
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